Von Luca bis Eva – die komplette Evolution des Menschen Teil 3: Sex

 

 

Transkript

Video:

Literaturliste:

Grundlagenliteratur: Zellzyklus, Mitose, Meiose, Kernphasenwechel

Die Grundlagen der sexuellen Vermehrung, den Unterschied zwischen haploid und diploid, die Prozesse der Mitose und Meiose, sowie des Kernphasenwechsels (Diplonten, Haplonten, Diplohaplonten) können in jedem Gängen Standardlehrbuch der Biologie nachgelesen werden, z. B.

Alberts, B. et al.: Molecular Biology of the Cell (aktuelle Auflagen, z.B. 7. Auflage, 2022); Kapitel 17 (Zellzyklus)

Campbell, N.A., Reece, J.B. et al: Biology (z.B. 12. Auflage, 2020); Kapitel 12 (Zellzyklus) und Kapitel 13 (Meiose)

Savada, D. et al. (10. Auflage, 2017): Purves Biologie; Kapitel 11 (Zellzyklus und Zellteilung)

Online sind von mir dazu folgende Kapitel erschienen:

Molekularbiologie der Zelle Teil 13: Mitose und Zellzyklus https://internet-evoluzzer.de/mitose/

Molekularbiologie der Zelle Teil 14: Meiose, Rekombination und Kernphasenwechsel https://internet-evoluzzer.de/meiose/

Warum gibt es Sex?

Es gibt eine Reihe an allgemeiner Literatur, die sich mit den evolutionären Ursprüngen der sexuellen Vermehrung befasst. Wichtige theoretische Arbeiten finden sich u. a. bei

Maynard Smith J, Szathmary E. (1995): The Major Transitions in Evolution. Oxford University Press, Oxford. Vor allem in Kapitel 9. 1996 erschien im Spektrumverlag eine deutsche Übersetzung mit dem Titel „Evolution – Prozesse, Mechanismen, Modelle“

Von denselben Autoren erschien auch folgendes Werk, welches sich mit den Ursprüngen der sexuellen Vermehrung befasst:

Maynard Smith J, Szathmary E. (1999): The origins of life. Oxford University Press. Kapitel 7 befasst sich mit den Ursprüngen der Sexualität.

Sowie:

Maynard-Smith J. (1978). The Evolution of Sex. Cambridge University Press, Cambridge

Einige populärwissenschaftliche Bücher, die die Evolution der Sexualität behandeln sind:

Lane, N. (2009): Life Ascending: The Ten Great Inventions of Evolution. WW Norton/Profile, London. (Kapitel 5)

Lane, N. (2017): Der Funke des Lebens Energie und Evolution. Konrad Theis Verlag (Kapitel 6)

Die Theorien von Fisher und Muller zur Bedeutung der sexuellen Vermehrung für die Eliminierung schlechter Mutationen bzw. der Durchsetzung positiver Mutationen in Populationen und die genetische Diversität allgemein finden sich bei:

Fisher, R. (1930): The Genetical Theory of Natural Selection. Clarendon Press, Oxford

Muller, H. J. (1932): Some genetic aspects of sex. American naturalist 66: 118-138

Muller, H. J. (1964). The relation of recombination to mutational advance. Mutation Research, 1, 2–9. https://doi.org/10.1016/0027-5107(64)90047-8

Moderne Literatur, die sich mit diesen Fragestellungen befasst:

Bell G. (1982). The Masterpiece of Nature: The Evolution and Genetics of Sexuality. University of California Press, Berkeley.

Bernstein H et al. (1985). Genetic damage, mutation, and the evolution of sex. Science. 229 (4719): 1277–81.

Burt, A. (2000). Sex, recombination, and the efficacy of selection: was Weismann right? Evolution 54: 337-351

Butlin, R. (2002). The costs and benefits of sex: new insights from old asexual lineages. Nature Reviews in Genetics 3: 311-317

Cavalier-Smith, T. (2002). Origins of the machinery of recombination and sex. Heredity 88: 125-141

Clark WR. (1997). Sex and the Origins of Death. Oxford University Press, New York.

Dacks, J., Roiger, AJ (1999): The first sexual lineage and the relevance of facultative sex. Journal of Molecular Evolution 48: 779-783

Felsenstein J (1974). The evolutionary advantage of recombination. Genetics 78: 737–56.

Goodenough, U, Heitman, J (2014). Origins of eukaryotic sexual reproduction. Cold Spring Harbor Perspectives in Biology, 6(3), a016154. https://doi.org/10.1101/cshperspect.a016154

Goyal, S. et al. (2012). Dynamic Mutation–Selection Balance as an Evolutionary Attractor. Genetics. DOI: 10.1534/genetics.112.141291

Heng, HHQ (2007). Elimination of altered karyotypes by sexual reproduction preserves species identity. Genome, 50(5), 517–524. https://doi.org/10.1139/g07-039

Keightley, PD, Otto SP (2006). Interference among deleterious mutations favours sex and recombination in finite populations. Nature 443: 89-92

Kondrashov, AS (1988). Deleterious mutations and the evolution of sexual reproduction. Nature, 336(6198), 435–440. https://doi.org/10.1038/336435a0

Kondrashov, Alexey. (2016). Crumbling Genome: The Impact of Deleterious Mutations on Humans. 10.1002/9781118952146.

Lane N. Power, Sex, Suicide: Mitochondria and the Meaning of Life. Oxford University Press, Oxford.

Lane N. (2009). Why sex is worth losing your head for. New Scientist 2712: 40–43.

Lankenau, DH. (2007). The Legacy of the Germ Line – Maintaining Sex and Life in Metazoans: Cognitive Roots of the Concept of Hierarchical Selection. 10.1007/7050_2007_030.

Lenormand T et al. (2016). Evolutionary mysteries in meiosis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 371 (1706): 050831.

Michod RE et al. (2008). Adaptive value of sex in microbial pathogens. Infection, Genetics and Evolution. 8 (3): 267–85.

Neher, RA, Shraiman, BI (2012). Fluctuations of Fitness Distributions and the Rate of Muller’s Ratchet Genetics. DOI: 10.1534/genetics.112.141325

Otto SP (2008). Sexual reproduction and the evolution of sex. Nature Education, 1(1), 182

Otto SP (2009). The evolutionary enigma of sex. The American Naturalist, 174(S1), 1-14

Otto SP, Gerstein AC (2006). Why have sex? The population genetics of sex and recombination. Biochemical Society Transactions. 34 (Pt 4): 519–22.

Otto, SP, Nuismer SL (2004): Species interactions and the evolution of sex. Science 304: 1018-1020

Partridge L, Hurst LD (1998). Sex and conflict. Science 281: 2003–08.

Vrijenhoek, R. C. (1998). Animal clones and diversity. BioScience, 48, 617-628.

Zur Red Queen Hypothese der sexuellen Vermehrung:

Hamilton WD (1980). Sex versus non-sex versus parasite. Oikos 35: 282–90.

Hamilton, W. D. et al. (1990): Sexual reproduction as an adaption to resist parasites. Proceedings of the National Academy of Sciences USA 87: 3566-3573

Howard, SV, Lively CV (1994): Parasitism, mutation accumulation and the maintence of sex. Nature 367: 554_557

Ridley M. (1994). The Red Queen: Sex and the Evolution of Human Nature. Penguin, London.

Die konkret erwähnten Studien, welche die Mullersche Ratsche im menschlichen Genom belegen:

Hussin, J. et al. (2015). Recombination affects accumulation of damaging and disease-associated mutations in human populations. Nat Genet 47, 400–404. https://doi.org/10.1038/ng.3216

Sohail M, et al. (2017). Negative selection in humans and fruit flies involves synergistic epistasis. Science 356: 539-542

Ursprung des Kernphasenwechsels, Horizontaler Gentransfer und Evolution der Meiose

Die Evolution des Kernphasenwechsels und der Ursprung der Meiose wird u. a. auch im 9. Kapitel von Maynard Smith J, Szathmary E. (1995). behandelt

Speziellere Literatur findet sich u. a. bei:

Lenormand T. et al. (2016). Evolutionary mysteries in meiosis. Phil. Trans. R. Soc. B37120160001

Mable, BK., Otto, SP (1998). The evolution of life cycles with haploid and diploid phases. BioEssays. 20 (6): 453–462.

Valero, M (1992). Evolution of alternation of haploid and diploid phases in life cycles. Trends in Ecology & Evolution. 7 (1): 25–29.

Einen allgemeinen Überblick über den horizontalen Gentransfer findet sich z. B. bei:

Savada, D. et al. (10. Auflage, 2017): Purves Biologie, Kapitel 12.6.

Tiefer in die Einzelheiten geht:

Madigan, M. T.; et al. (2020): Brock Mikrobiologie. München: Pearson, Kapitel 11.

Wechsel zwischen sexueller und asexueller Fortpflanzung und Sex als Reaktion auf Umweltstressor:

Bernstein C, Johns V (1989). Sexual reproduction as a response to H2O2 damage in Schizosaccharomyces pombe. Journal of Bacteriology. 171 (4): 1893–7.

Hörandl E, Hadacek F (2013). The oxidative damage initiation hypothesis for meiosis. Plant Reproduction. 26 (4): 351–67.

Kirk DL, Kirk MM (1986). Heat shock elicits production of sexual inducer in Volvox. Science. 231 (4733): 51–4.

Nedelcu AM, Michod RE (2003). Sex as a response to oxidative stress: the effect of antioxidants on sexual induction in a facultatively sexual lineage. Proceedings: Biological Sciences. 270 Suppl 2 (Suppl 2): S136–9.

Zur Biologie und Vermehrung der Bdelloidea:

Eyres I et al. (2015). Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats. BMC Biol 13, 90. https://doi.org/10.1186/s12915-015-0202-9

Judson OP; Normark BB (1996). Ancient asexual scandals. Trends in Ecology & Evolution. 11 (2): 41–46.

Nowell RW et al. (2024). Bdelloid rotifers deploy horizontally acquired biosynthetic genes against a fungal pathogen. Nat Commun 15, 5787. https://doi.org/10.1038/s41467-024-49919-1

Stelzer CP (2008). Obligate asex in a rotifer and the role of sexual signals. Journal of Evolutionary Biology. 21 (1): 287–293.

Stelzer CP; et al. (2010). Loss of Sexual Reproduction and Dwarfing in a Small Metazoan. PLOS ONE. 5 (9): e12854.

Terwagne M et al. (2022). DNA repair during nonreductional meiosis in the asexual rotifer Adineta vaga. Science Advances. 8 (48): eadc8829.

Westheide W, Rieger, R (2007). Sopezielle Zoologie, Spektrum Verlag, Kapitel Gnathifera (S. 261 – 283).

Wilson CG et al. (2024). Recombination in bdelloid rotifer genomes: asexuality, transfer and stress. Trends in Genetics, Volume 40, Issue 5, 422 – 436

Horizontaler Gentransfer und Zellteilung bei Bacteria und Archaea in Bezug zur Meiose/sexuellen Vermehrung:

Anagnostopoulos C, Spizizen J (1961). Requirements for Transformation in Bacillus Subtilis. Journal of Bacteriology. 81 (5): 741–6.

Bernstein, H, Bernstein, C (2010). Evolutionary Origin of Recombination during Meiosis, BioScience 60(7): 498–505

Bernstein H, Bernstein C (2017). Sexual Communication in Archaea, the Precursor to Eukaryotic Meiosis. In Witzany G (ed.). Biocommunication of Archaea. Springer Nature: 301–117.

Makarova KS, et al. (2010). Evolution of diverse cell division and vesicle formation systems in Archaea. Nat Rev Microbiol. 8(10):731-41. doi: 10.1038/nrmicro2406.

Malik SB, et al. (2007). An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLOS ONE. 3 (8): e2879.

Marcon E, Moens PB (2005). The evolution of meiosis: recruitment and modification of somatic DNA-repair proteins. BioEssays. 27 (8): 795–808.

Poxleitner MK, et al. (2008). Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science. 319 (5869): 1530–3.

Ramesh MA, et al. (2005). A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Current Biology. 15 (2): 185–91.

Szollosi, GJ, et al. (2006). The maintenance of sex in bacteria is ensured by ist potential to reload genes. Genetics 174: 2173-2180

Takeuchi N, Kaneko K, Koonin EV (2014). Horizontal gene transfer can rescue prokaryotes from Muller’s ratchet: benefit of DNA from dead cells and population subdivision. Genes Genomes Genetics 4: 325–39.

Villeneuve AM, Hillers KJ (2001). Whence meiosis? Cell. 106 (6): 647–50.

Wilkins AS, Holliday R (2009). The evolution of meiosis from mitosis. Genetics. 181 (1): 3–12.

Allgemeine Zellteilung bei Prokaryoten:

Ekundayo B, Bleichert F. (2019). Origins of DNA replication. PLoS Genet. 15(9): e1008320.

Madigan, M. T.; et al. (2020): Brock Mikrobiologie. München: Pearson, Kapitel 7

Maynard Smith J, Szathmary E. (1995): The Major Transitions in Evolution. Oxford University Press, Oxford. Vor allem in Kapitel 9.

Polyploide Prokaryoten:

Chen, A et al. (2012). Spatial and Temporal Organization of Chromosome Duplication and Segregation in the Cyanobacterium Synechococcus elongatus PCC 7942. PloS one. 7. e47837.

Soppa J. (2014). Polyploidy in archaea and bacteria: about desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. J Mol Microbiol Biotechnol. 24(5-6): 409-19.

Sun L, et al. (2018). Effective polyploidy causes phenotypic delay and influences bacterial evolvability. PLoS Biol 16(2): e2004644. https://doi.org/10.1371/journal.pbio.2004644

Rolle der Introns zur Bildung von Chromosomen:

Koonin EV (2006). The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biology Direct 1: 22.

Koonin EV (2009). Intron-dominated genomes of early ancestors of eukaryotes. Journal of Heredity 100: 618–23.

Lambowitz AM, Zimmerly S. (2011). Group II introns: mobile ribozymes that invade DNA. Cold Spring Harbor Perspectives in Biology 3: a003616.

Evolution des Cytoskelettes

Allgemeine Literatur zum Cytoskelett findet sich u. a. bei:

Alberts, B. et al.: Molecular Biology of the Cell (aktuelle Auflagen, z.B. 7. Auflage, 2022); Kapitel 16

Eine Reihe an Literatur hat Cytoskelett-ähnliche Proteine in Prokaryoten entdeckt und daraus evolutionäre Szenarien zur Entstehung des Cytoskeletts bei Eukaryoten abgeleitet:

Akil C et al. (2019). Complex eukaryotic-like actin regulation systems from Asgard archaea. 10.1101/768580.

Bera A, Gupta ML Jr. (2022). Microtubules in Microorganisms: How Tubulin Isotypes Contribute to Diverse Cytoskeletal Functions. Front Cell Dev Biol. 10:913809.

Cooper A et al. (2023). Archaeal Tubulin-like Proteins Modify Cell Shape in Haloferax volcanii during Early Biofilm Development. Genes. 14. 1861. 10.3390/genes14101861.

Eme L et al. (2017). Archaea and the origin of eukaryotes. Nat Rev Microbiol 15, 711–723. https://doi.org/10.1038/nrmicro.2017.133

Gitai Z. (2005). The new bacterial cell biology: moving parts and subcellular architecture. Cell. 120(5): 577-86

Kull FJ et al. (1998). The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J Muscle Res Cell Motil. 19(8):877-86.

Liao Y, et al. (2018). Archaeal cell biology: diverse functions of tubulin-like cytoskeletal proteins at the cell envelope. Emerg Top Life Sci. 2(4):547-559.

Lu Z et al. (2020). Coevolution of Eukaryote-like Vps4 and ESCRT-III Subunits in the Asgard Archaea. mBio 11:10.1128/mbio.00417-20.

Merino F, Raunser S (2016) Cytoskeleton: The mother of all actins? eLife 5:e23354.

Merino F, Raunser S (2018). The complex simplicity of the bacterial cytoskeleton, Proc. Natl. Acad. Sci. U.S.A. 115 (13) 3205-3206

Miyata M et al. (2020).  Tree of motility – A proposed history of motility systems in the tree of life. Genes Cells 25(1):6-21.

Richards T, Cavalier-Smith T (2005). Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118

Salje J et al. (2010). The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments. Nat Rev Microbiol 8, 683–692

Stairs CW, Ettema TJG (2020). The Archaeal Roots of the Eukaryotic Dynamic Actin Cytoskeleton. Curr Biol. 30(10): R521-R526.

Survery S et al. (2021). Heimdallarchaea encodes profilin with eukaryotic-like actin regulation and polyproline binding. Commun Biol 4, 1024

Tarrason R et al. (2020). The proteasome controls ESCRT-III-mediated cell division in an archaeon. Science 369(6504): eaaz2532

Tromer, EC et al. (2019). Mosaic origin of the eukaryotic kinetochore, Proc. Natl. Acad. Sci. U.S.A. 116 (26) 12873-12882

Wagstaff J, Löwe J (2018). Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat Rev Microbiol 16, 187–201

Wickstead B, Gull K (2011). The evolution of the cytoskeleton. J Cell Biol. 194(4): 513-25.

Evolution der Keimzellen

Zur Verteidigung von zwei Geschlechtern in der Biologie:

Bachtrog D et al. (2014) Sex Determination: Why So Many Ways of Doing It? PLoS Biol 12(7): e1001899. https://doi.org/10.1371/journal.pbio.1001899

Goymann W, Brumm H, Kappeler PM. (2023). Biological sex is binary, even though there is a rainbow of sex roles: Denying biological sex is anthropocentric and promotes species chauvinism: Denying biological sex is anthropocentric and promotes species chauvinism. Bioessays. 45(2):e2200173.

Scharer, L. (2017). The varied ways of being male and female. Molecular Reproduction & Development, 84.

Natürlich ist auch meine Artikelreihe „Mars versus Venus“ interessant für tiefergehende Thematiken.

https://internet-evoluzzer.de/mars-versus-venus/

Zur Anisogamie:

Bulmer MG, Parker GA. (2002). The evolution of anisogamy: a game-theoretic approach. Proc Biol Sci. 269(1507):2381-8.

Czaran, T., Hoekstra. R. (2004). Evolution of sexual asymmetry. BMC Evolutionary Biology, 4(34).

da Silva, J. (2018). The evolution of sexes–a specific test of the disruptive selection theory. Ecology and Evolution, 8, 207; Lehtonen, J., Parker, G. (2014). 1165.

Epelman M et al. (2005). Anisogamy, Expenditure of Reproductive Effort, and the Optimality of Having Two Sexes. Operations Research. 53. 560-567. 10.1287/opre.1040.0179.

Geng, S., De Hoff, P., Umen, J. (2014). Evolution of sexes from an ancestral mating-type specification pathway. PLOS Biology, 13(1).

Hoekstra RF (1982). On the asymmetry of sex – evolution of mating types in isogamous populations. Journal of Theoretical Biology 98: 427–51.

Hutson V, Law R. (1993). Four steps to two sexes. Proceedings Royal Society B 253: 43–51.

Iwasa Y, Sasaki A. (1987). EVOLUTION OF THE NUMBER OF SEXES. Evolution 41(1):49-65.

Kirk, D. (2006). Oogamy–inventing the sexes. Current Biology, 16(24).

Kodric-Brown, A., Brown, J.H. (1987). Anisogamy, sexual selection, and the evolution and maintenance of sex. Evol Ecol 1, 95–105

Lehtonen, J. (2017). Gamete Size. Encyclopedia of Evolutionary Psychological Science.

Lehtonen, J., Parker, G. (2014). Gamete competition, gamete limitation, and the evolution of the two sexes. Molecular Human Reproduction, 1165.

Lehtonen, J., Kokko, H., Parker, GA. (2016). What do isogamous organisms teach us about sex and the two sexes? PTBS, 371(1706), 2.

Lessells CM et al. (2009). The evolutionary origin and maintenance of sperm: selection for a small motile gamete mating type. In: Sperm biology: an evolutionary perspective (Hrsg.: T. R. Birkhead, D. J. Hosken, S. Pitnick), Academic Press, New York, 43–67.

Parker GA, Smith VGF, Baker RR (1972). The origin and evolution of gamete dimorphism and the male-female phenomenon. Journal of Theoretical Biology 36: 529–53 (1972).

Roughgarden J, Iyer P (2011). Contact, not confict, causes the evolution of anisogamy. In: The evolution of anisogamy: A fundamental phenomenon underlying sexual selection (Hrsg.: P. A. Cox, T. Togashi), Cambridge University Press, Cambridge, 96–110.

Zu den Paarungstypen bei Pilzen:

Cepelewicz, J. (2018). Why nature prefers couples, even for yeast. Scientific American.

Fraser, J., Heitman, J. (2003). Fungal mating-type loci. Current Biology, 13(20).

Nieuwenhuis, B et al. (2013). Evolution of uni- and bifactorial sexual compatibility systems in fungi. Heredity 111, 445–455

Peris D et al. (2022). Large-scale fungal strain sequencing unravels the molecular diversity in mating loci maintained by long-term balancing selection. PLoS Genet. 18(3): e1010097.

Perrin, N. (2011). What uses are mating types? The ‘developmental switch’ model. Evolution, 66-4, 947-956.

Eine Übersicht zum Thema Evolutionäres Interesse und genomischer Konflikt:

Werren, JH (2011). Selfish genetic elements, genetic conflict, and evolutionary innovation, Proc. Natl. Acad. Sci. U.S.A. 108 (supplement_2) 10863-10870, https://doi.org/10.1073/pnas.1102343108.

Rolle der Mitochondrien zur Anisogamie:

Allen JF, de Paula WBM (2013). Mitochondrial genome function and maternal inheritance. Biochemical Society Transactions 41: 1298–1304.

Birky CW (1995). Uniparental inheritance of mitochondrial and chloroplast genes – mechanisms and evolution. Proceedings National Academy Sciences USA 92: 11331–38.

Breton S, Stewart, D (2015). Atypical mitochondrial inheritance patterns in eukaryotes. Genome 58, 423–31, 10.1139/gen-2015-0090.

Cosmides LM, Tooby J (1981). Cytoplasmic inheritance and intragenomic conflict. Journal of Theoretical Biology 89: 83–129.

Hadjivasiliou Z et al. (2013). Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes. Proceedings Royal Society B 280: 20131920

Hadjivasiliou Z et al. (2012). Selection for mitonuclear co-adaptation could favour the evolution of two sexes. Proceedings Royal Society B 279: 1865–72.

Radzvilavicius AL et al. (2015). Mitochondrial variation drives the evolution of sexes and the germline-soma distinction.