Transkript (pdf)
Vom Prokaryoten zum Eukaryoten: ein knapper Überblick
Einige Standartliteratur, welche einen Überblick über die Domänen des Lebens liefert sind z. B.
Alberts, B. et al.: Molecular Biology of the Cell (aktuelle Auflagen, z.B. 7. Auflage, 2022); Abschnitte zu Unterschieden zwischen Prokaryoten und Eukaryoten.
Campbell, N.A., Reece, J.B. et al: Biology (z.B. 12. Auflage, 2020); Kapitel zur Systematik und Evolution der Domänen.
Futuyma, D.J., Kirkpatrick, M.: Evolution (z.B. 5. Auflage, 2023), Systematik, phylogenetische Einordnung und Evolution der Domänen.
Madigan, M.T., et al. (2020): Brock Mikrobiologie, Kapitel 13 (Evolution und Systematik der Mikroben)
Sadava, D., et al. (2019): Purves Biologie. Berlin Heidelberg New York: Springer-Verlag. Kapitel 26 (Bakterien und Archaeen) und Kapitel 27 (Eukaryoten)
Mein Artikel „Entstehung des Lebens Kapitel 10: Last Universal Common Ancestor (LUCA)“ befasst sich ebenfalls mit den Domänen des Lebens und ihrer phylogenetischen Beziehungen: https://internet-evoluzzer.de/last-universal-common-ancestor-luca/
Spezialliteratur über die Archaeen und Bakterien (in Bezug zur Verwandtschaft mit den Eukaryoten). Diese verwandtschaftlichen Verhältnisse wurden insbesondere in der Episode zur Endosymbiontentheorie näher erklärt:
Albers, S; Ashmore, J; Pollard, T; Spang, A; Zhou, J (2022). “Origin of eukaryotes: What can be learned from the first successfully isolated Asgard archaeon”. Faculty Reviews. 11: 3. doi:10.12703/r-01-000005
Castelle, C.J.; Banfield, J.F. (2018). “Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life”. Cell. 172 (6): 1181–1197. doi:10.1016/j.cell.2018.02.016
Eme, L., Spang, A., Lombard, J. et al. Archaea and the origin of eukaryotes. Nat Rev Microbiol 15, 711–723 (2017). https://doi.org/10.1038/nrmicro.2017.133
Eme L, Tamarit D, Caceres EF, et al. (2023). Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618(7967):992-999. doi: 10.1038/s41586-023-06186-2.
Fournier, Gregory P.; Poole, Anthony M. (2018). “A briefly argued case that Asgard Archaea are part of the Eukaryote tree”. Frontiers in Microbiology. 9: 1896. doi:10.3389/fmicb.2018.01896
Koonin, E.V. Archaeal ancestors of eukaryotes: not so elusive any more. BMC Biol 13, 84 (2015). https://doi.org/10.1186/s12915-015-0194-5
Liu, Y., Makarova, K.S., Huang, WC. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021). https://doi.org/10.1038/s41586-021-03494-3
Nobs SJ, MacLeod FI, Wong HL, Burns BP. Eukarya the chimera: eukaryotes, a secondary innovation of the two domains of life? Trends Microbiol. 2022 May;30(5):421-431. doi: 10.1016/j.tim.2021.11.003. Epub 2021 Dec 1. PMID: 34863611.
Petitjean, C.; Deschamps, P.; López-García, P.; Moreira, D. (2014). “Rooting the domain Archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota”. Genome Biol. Evol. 7 (1): 191–204. doi:10.1093/gbe/evu274
Spang, A., Saw, J., Jørgensen, S. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015). https://doi.org/10.1038/nature14447
Spang A, Eme L, Saw JH, Caceres EF, Zaremba-Niedzwiedzka K, Lombard J, et al. (2018) Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet 14(3): e1007080. https://doi.org/10.1371/journal.pgen.1007080
Williams TA, Cox CJ, Foster PG, et al. (2020). Phylogenomics provides robust support for a two-domains tree of life. Nat Ecol Evol 4(1):138-147. doi: 10.1038/s41559-019-1040-x.
Xie, R., Wang, Y., Huang, D. et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci. China Life Sci. 65, 818–829 (2022). https://doi.org/10.1007/s11427-021-1969-6
Zaremba-Niedzwiedzka, K., Caceres, E., Saw, J. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017). https://doi.org/10.1038/nature21031
Zhang, J., Feng, X., Li, M. et al. Deep origin of eukaryotes outside Heimdallarchaeia within Asgardarchaeota. Nature 642, 990–998 (2025). https://doi.org/10.1038/s41586-025-08955-7
Verwandtschaft zwischen Archaeen und Eukaryoten mit Schwerpunkt des Cytoskeletts wurde im Video zur Entstehung der sexuellen Vermehrung behandelt, entsprechend befinden sich die Quellen dort.
Opisthokonta
Allgemeine Literatur zur taxonomischen Vielfalt der Eukaryoten findet sich, ebenso wie die Vielfalt der Bakterien und Archaeen in den oben allgemeinen Lehrbüchern (Alberts et. Al., Campbell et al., Madigan et al, Sadava et al.), sowie in der Episode zur Endosymbiontentheorie. Einige gesonderte Literatur soll hier aber aufgelistet werden, die sich speziell mit der reihe hin zu den Opisthokonta befasst:
Adl SM, Bass D, Lane CE, et al. (2019). “Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes”. The Journal of Eukaryotic Microbiology. 66 (1): 4–119. doi:10.1111/jeu.12691.
Al Jewari, C; Baldauf, S. L. (2023). “An excavate root for the eukaryote tree of life”. Science Advances. 9 (17): eade4973. doi:10.1126/sciadv.ade4973
A Minge M, Silberman JD, Orr RJ, et al. (November 2008). “Evolutionary position of breviate amoebae and the primary eukaryote divergence”. Proc. Biol. Sci. 276 (1657): 597–604. doi:10.1098/rspb.2008.1358
Burki F (2014). “The eukaryotic tree of life from a global phylogenomic perspective”. Cold Spring Harbor Perspectives in Biology. 6 (5): a016147. doi:10.1101/cshperspect.a016147
Burki F, Pawlowski J (October 2006). “Monophyly of Rhizaria and multigene phylogeny of unicellular bikonts”. Mol. Biol. Evol. 23 (10): 1922–30. doi:10.1093/molbev/msl055
Burki, Fabien; Roger, Andrew J.; Brown, Matthew W.; Simpson, Alastair G. B. (2020-01-01). “The New Tree of Eukaryotes”. Trends in Ecology & Evolution. 35 (1): 43–55. doi:10.1016/j.tree.2019.08.008
Burki, Fabien; Okamoto, Noriko; Pombert, Jean-François; Keeling, Patrick J. (7 June 2012). “The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins”. Proceedings of the Royal Society of London B: Biological Sciences. 279 (1736): 2246–2254. doi:10.1098/rspb.2011.2301
Burki F, Kaplan M, Tikhonenkov DV, et al. (2016). “Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista”. Proceedings: Biological Sciences. 283 (1823): 20152802. doi:10.1098/rspb.2015.2802.
Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida KI, Hashimoto T, Simpson A, Roger A (2018-01-19). “Phylogenomics Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group”. Genome Biology and Evolution. 10 (2): 427–433. doi:10.1093/gbe/evy014
Cavalier-Smith T (1981). “Eukaryote kingdoms: seven or nine?”. Bio Systems. 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2
Cavalier-Smith, T (2010). “Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree”. Biology Letters. 6 (3): 342–345. doi:10.1098/rsbl.2009.0948
Cavelier Smith (2013). “Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa”. European Journal of Protistology. 49 (2): 115–178. doi:10.1016/j.ejop.2012.06.001
Cavalier-Smith, T (2017). “Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences”. Protoplasma. 255 (1): 297–357. doi:10.1007/s00709-017-1147-3
Cavalier-Smith T (2017). “Euglenoid pellicle morphogenesis and evolution in light of comparative ultrastructure and trypanosomatid biology: Semi-conservative microtubule/strip duplication, strip shaping and transformation”. European Journal of Protistology. 61 (Pt A): 137–179. doi:10.1016/j.ejop.2017.09.002
Cavalier-Smith, T.; Chao, E. E.; Snell, E. A.; Berney, C.; Fiore-Donno, A. M.; Lewis, R. (2014). “Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa”. Molecular Phylogenetics & Evolution. 81: 71–85. doi:10.1016/j.ympev.2014.08.012
Cavalier-Smith, T; Chao, E E.; Lewis, R (2016). “187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution”. Molecular Phylogenetics and Evolution. 99: 275–296. doi:10.1016/j.ympev.2016.03.023
Cavalier-Smith T, Fiore-Donno AM, Chao E, Kudryavtsev A, Berney C, Snell EA, Lewis R (February 2015). “Multigene phylogeny resolves deep branching of Amoebozoa”. Mol Phylogenet Evol. 83: 293–304. doi:10.1016/j.ympev.2014.08.01
Eliáš, Marek; Klimeš, Vladimír; Derelle, Romain; Petrželková, Romana; Tachezy, Jan (2016). “A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution”. Biology Direct. 11 (1): 5. doi:10.1186/s13062-016-0107-8
Keeling PJ, Eglit Y. Openly available illustrations as tools to describe eukaryotic microbial diversity. PLoS Biol. 2023 Nov 21;21(11):e3002395. doi: 10.1371/journal.pbio.3002395
Tikhonenkov DV, Mikhailov KV, Gawryluk RM, et al. (December 2022). “Microbial predators form a new supergroup of eukaryotes”. Nature. 612 (7941): 714–719. doi:10.1038/s41586-022-05511-5
Zaremba-Niedzwiedzka, K., Caceres, E., Saw, J. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017). https://doi.org/10.1038/nature21031
Zakryś, B; Milanowski, R; Karnkowska, Anna (2017). “Evolutionary Origin of Euglena”. Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology. Vol. 979. pp. 3–17. doi:10.1007/978-3-319-54910-1_1
Ursprünge der Vielzelligkeit
Allgemeine Übersichts-Literatur zu den Opisthokonta, Choanoflagellata und Mehrzelligkeit:
Giribet, G., Edgecombe, G. (2020): The Invertebrate Tree of Life. Princeton University Press, Kapitel 1
Leys, S., Hejnol, A. )2021): Origin and Evolution of Metazoan Cell Types. CRC Press (Besonders Kapitel 2)
Maynard Smith J, Szathmary E. (1995): The Major Transitions in Evolution. Oxford University Press, Oxford. Vor allem in Kapitel 12. 1996 erschien im Spektrumverlag eine deutsche Übersetzung mit dem Titel „Evolution – Prozesse, Mechanismen, Modelle“
Maynard Smith J, Szathmary E. (1999): The origins of life. Oxford University Press., Kapitel 10
Minelli, A. (2009): Perspectives in Animal Phyloigeny and Evolution. Oxoford University Press, Kapitel 3)
Rosselbroich, B. (2014): On the Origin of Autonomy. A New Look at the Major Transitions in Evolution. Springer Verlag, Kapitel 4
Ruppert, E., Fox, R., Barnes, R. (2004): Invertebrate Zoology. Cengage Learning, Kapitel 3 (Kapitel 4 für Metazoa)
Schmidt-Rhaesa, A. (2007): The Evolution of Organ Systems. Oxford University Press, Kapitel 1 und 2
Shubin, N. (2008): Der Fisch in uns. S. Fischer, Kapitel 7
Westheide, W., Rieger, R (Hrsg. 2007): Spezielle Zoologie Teil 1: Einzeller und wirbellose Tiere. Spektrum Verlag, Kapitel 11
Spezialliteratur zu Opisthokonta und Ursprung der Metazoa (Schwerpunkt Phylogenie und Vielzelligkeit):
Adl, S M.; et al. (2005). “The new higher level classification of eukaryotes with emphasis on the taxonomy of protists”. The Journal of Eukaryotic Microbiology. 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x
Arendt, D (2008): The evolution of cell types in animals: emerging principles from molecular studies. Nature Reviews Genetics 9: 868–882.
Arroyo, Alicia S; Lannes, Romain; Bapteste, Eric; Ruiz-Trillo, Iñaki (2020). “Gene Similarity Networks Unveil a Potential Novel Unicellular Group Closely Related to Animals from the Tara Oceans Expedition”. Genome Biology and Evolution. 12 (9): 1664–1678. doi:10.1093/gbe/evaa117
Brown, M. W.; Spiegel, F. W.; Silberman, J. D. (2009). “Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta”. Molecular Biology and Evolution. 26 (12): 2699–2709. doi:10.1093/molbev/msp185
Brunet T, King N. (2017). The Origin of Animal Multicellularity and Cell Differentiation. Dev Cell. 43(2): 124-140. doi: 10.1016/j.devcel.2017.09.016.
Brunet T, King N (2022). “The Single-Celled Ancestors of Animals: A History of Hypotheses”. In Herron MD, Conlin PL, Ratcliff WC (eds.). The Evolution of Multicellularity. Evolutionary Cell Biology. CRC Press. pp. 251–278.
Brunet, T; Larson, B T.; Linden, T A.; Vermeij, M J. A.; McDonald, K; King, N (2019). “Light-regulated collective contractility in a multicellular choanoflagellate”. Science. 366 (6463): 326–334. doi:10.1126/science.aay2346
Budd, G. E.; Jensen, S. (2015). “The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution”. Biological Reviews. 92 (1): 446–473. doi:10.1111/brv.12239
Carr M, Leadbeater BS, Hassan R, Nelson M, Baldauf SL (2008). “Molecular phylogeny of choanoflagellates, the sister group to Metazoa”. Proceedings of the National Academy of Sciences of the United States of America. 105 (43): 16641–6. doi:10.1073/pnas.0801667105
Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N (2011). “Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta”. Developmental Biology. 357 (1): 73–82. doi:10.1016/j.ydbio.2011.06.003
Fairclough SR, Chen Z, Kramer E, et al. (2013). “Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta”. Genome Biology. 14 (2): R15. doi:10.1186/gb-2013-14-2-r15
Fairclough SR, Dayel MJ, King N (2010). “Multicellular development in a choanoflagellate”. Current Biology. 20 (20): R875-6. doi:10.1016/j.cub.2010.09.014
Grau-Bové, Xavier; Torruella, Guifré; Donachie, Stuart; Suga, Hiroshi; Leonard, Guy; Richards, Thomas A; Ruiz-Trillo, Iñaki (2017). “Dynamics of genomic innovation in the unicellular ancestry of animals”. eLife. 6: e26036. doi:10.7554/eLife.26036
Hehenberger, E.; Tikhonenkov, D. V.; Kolisko, M.; Campo, J. del; Esaulov, A. S.; Mylnikov, A. P.; Keeling, P. J. (2017). “Novel Predators Reshape Holozoan Phylogeny and Reveal the Presence of a Two-Component Signaling System in the Ancestor of Animals”. Current Biology. 27 (13): 2043–2050.e6. doi:10.1016/j.cub.2017.06.006
Huang, Jinling; Xu, Ying; Gogarten, Johann Peter (2005). “The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic”. Molecular Biology and Evolution. 22 (11): 2142–2146. doi:10.1093/molbev/msi221
King N, Westbrook M, Young S, et al. (2008). “The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans”. Nature. 451 (7180): 783–788. Bibcode:2008Natur.451..783K. doi:10.1038/nature06617
Lang BF, O’Kelly C, Nerad T, Gray MW, Burger G (2002). “The Closest Unicellular Relatives of Animals”. Current Biology. 12 (20): 1773–1778. doi:10.1016/S0960-9822(02)01187-9
Leadbeater BS, Karpov SA (2000). “Cyst formation in a freshwater strain of the choanoflagellate Desmarella moniliformis Kent”. The Journal of Eukaryotic Microbiology. 47 (5): 433–9. doi:10.1111/j.1550-7408.2000.tb00071.x
Levin TC, King N (2013). “Evidence for sex and recombination in the choanoflagellate Salpingoeca rosetta”. Current Biology. 23 (21): 2176–80.
McShea, DW (2002): A complexity drain on cells in the evolution of multicellularity. Evolution 56(3): 441–452.
Medina, M.; Collins, A.G.; Taylor, J.W.; Valentine, J.W.; Lipps, J.H.; Zettler, L.A. Amaral; Sogin, M.L. (2003). “Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa”. International Journal of Astrobiology. 2 (3): 203–211.
Mikhailov, K. V.; Konstantinova, A. V.; Nikitin, M. A.; et al. (2009). “The origin of Metazoa: A transition from temporal to spatial cell differentiation”
Nichols, SA, Dayel MJ, King, N (2009): Genomic, phylogenetic and cell biological insights into metazoan origins. In: Telford MJ, Littlewoods DTJ (2009): Animal Evolution. Genomes, Fossils and Trees. Oxford University Press
Rose, C., Hammerschmidt, K. (2021). What Do We Mean by Multicellularity? The Evolutionary Transitions Framework Provides Answers. Frontiers in Ecology and Evolution. 9. 10.3389/fevo.2021.730714.
Ros-Rocher N, Pérez-Posada A, Michelle LM, Ruiz-Trillo I (2021). “The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition”. Open Biol. 11 (2): 200359. doi:10.1098/rsob.200359
Sebé-Pedrós A, Degnan B, Ruiz-Trillo I (2017). “The origin of Metazoa: a unicellular perspective”. Nature Reviews Genetics. 18 (8): 498–512. doi:10.1038/nrg.2017.21
Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T (2008). Aramayo R (ed.). “Multigene phylogeny of choanozoa and the origin of animals”. PLOS ONE. 3 (5): e2098. doi:10.1371/journal.pone.0002098
Sogabe, S., Hatleberg, W.L., Kocot, K.M. et al. (2019): Pluripotency and the origin of animal multicellularity. Nature 570, 519–522 https://doi.org/10.1038/s41586-019-1290-4
Steenkamp ET, Wright J, Baldauf SL (2006). “The protistan origins of animals and fungi”. Molecular Biology and Evolution. 23 (1): 93–106. doi:10.1093/molbev/msj011
Strother, P. K.; Brasier, M. D.; Wacey, D.; Timpe, L.; Saunders, M.; Wellman, C. H. (2021). “A possible billion-year-old holozoan with differentiated multicellularity”. Current Biology. 31 (12): 2658–2665.e2. doi:10.1016/j.cub.2021.03.051
Suga H, Chen Z, de Mendoza A, et al. (2013). “The Capsaspora genome reveals a complex unicellular prehistory of animals”. Nature Communications. 4 (2325) 2325. doi:10.1038/ncomms3325
Tikhonenkov DV, Hehenberger E, Esaulov AS, Belyakova OI, Mazei YA, Mylnikov AP, Keeling PJ. (2020). Insights into the origin of metazoan multicellularity from predatory unicellular relatives of animals. BMC Biol. 18(1):39. doi: 10.1186/s12915-020-0762-1.
Tikhonenkov, D. V.; Mikhailov, K. V.; Hehenberger, E.; Karpov, S. A.; Prokina, K. I.; Esaulov, A. S.; et al. (2020). “New Lineage of Microbial Predators Adds Complexity to Reconstructing the Evolutionary Origin of Animals”. Current Biology. 30 (22): 4500–4509.e5. doi:10.1016/j.cub.2020.08.061
Torruella, G.; Derelle, R.; Paps, J.; Lang, B. F.; Roger, A. J.; Shalchian-Tabrizi, K.; Ruiz-Trillo, I. (2012). “Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains”. Molecular Biology and Evolution. 29 (2): 531–544. doi:10.1093/molbev/msr185
Torruella, G.; De Mendoza, A.; Grau-Bové, X.; Antó, M.; Chaplin, M. A.; Del Campo, J.; et al. (2015). “Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi”. Current Biology. 25 (18): 2404–2410. doi:10.1016/j.cub.2015.07.053
Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993). “Monophyletic origins of the metazoa: an evolutionary link with fungi” (PDF). Science. 260 (5106): 340–342.
Zhang, Z.-Q. (2013). “Animal biodiversity: an update of classification and diversity in 2013+”. Zootaxa. 3703 (1): 5–11. doi:10.11646/zootaxa.3703.1.3
Weitere Spezialliteratur zur Evolution der Vielzelligkeit (außerhalb der Opisthokonta)
Boraas, M. E., Seale, D. B. & Boxhorn, J. E. (1998). Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evol. Ecol. 12, 153–164.
Bozdag, G. Ozan; Zamani-Dahaj, Seyed Alireza; Day, Thomas C.; et al. (2023). “De novo evolution of macroscopic multicellularity”. Nature. 617 (7962): 747–754.
Grochau-Wright ZI, Nedelcu AM, Michod RE (April 2023). “The Genetics of Fitness Reorganization during the Transition to Multicellularity: The Volvocine regA-like Family as a Model”. Genes (Basel). 14 (4): 941.
Grosberg, RK; Strathmann, RR (2007). “The evolution of multicellularity: A minor major transition?” Annu Rev Ecol Evol Syst. 38: 621–654.
Herron, M.D., Borin, J.M., Boswell, J.C. et al. De novo origins of multicellularity in response to predation. Sci Rep 9, 2328 (2019). https://doi.org/10.1038/s41598-019-39558-8
Lawal HM, Schilde C, Kin K, et al. (2020). “Cold climate adaptation is a plausible cause for evolution of multicellular sporulation in Dictyostelia”. Scientific Reports. 10 (1) 8797. doi:10.1038/s41598-020-65709-3
Lyons, Nicholas A.; Kolter, Roberto (2015). “On the evolution of bacterial multicellularity”. Current Opinion in Microbiology. 24: 21–28. doi:10.1016/j.mib.2014.12.007
Miller, S.M. (2010). “Volvox, Chlamydomonas, and the evolution of multicellularity”. Nature Education. 3 (9): 65.
Niklas, K.J. (2014). “The evolutionary-developmental origins of multicellularity”. American Journal of Botany. 101 (1): 6–25. doi:10.3732/ajb.1300314
Parfrey, L.W.; Lahr, D.J.G. (2013). “Multicellularity arose several times in the evolution of eukaryotes” BioEssays. 35 (4): 339–347. doi:10.1002/bies.201200143
Ratcliff, W. C., Denison, R. F., Borrello, M. & Travisano, M. Experimental evolution of multicellularity. Proc. Natl. Acad. Sci. USA 109, 1595–1600 (2012).
Extrazelluläre Matrix und Zelladhäsion
Allgemeine Literatur zur extrazellulären Matrix:
Alberts, B. et al.: Molecular Biology of the Cell (aktuelle Auflagen, z.B. 7. Auflage, 2022); Kapitel 19.
Campbell, N.A., Reece, J.B. et al: Biology (z.B. 12. Auflage, 2020); Kapitel 6.7 und 40.1.
Sadava, D., et al. (2019): Purves Biologie. Berlin Heidelberg New York: Springer-Verlag. Kapitel 5.4, 6.2 und 39
Mein Artikel zur extrazellulären Matrix: Molekularbiologie der Zelle Teil 16: Zellgewebe und Zellverknüpfung: https://internet-evoluzzer.de/zellgewebe/
Evolutionäre Hintergründe zur Entstehung der extrazellulären Matrix:
AG Evolutionsbiologie: Evolution der Zelladhäsion bei Vielzellern https://www.ag-evolutionsbiologie.de/html/2010/evolution-of-integrin.html (und dort zitierte Quellen)
Berne, C., Ellison, C.K., Ducret, A. et al. (2018). Bacterial adhesion at the single-cell level. Nat Rev Microbiol 16, 616–627 https://doi.org/10.1038/s41579-018-0057-5
de Wouters T, Jans C, Niederberger T, Fischer P, Rühs PA. (2015). Adhesion Potential of Intestinal Microbes Predicted by Physico-Chemical Characterization Methods. PLoS One. 10(8):e0136437. doi: 10.1371/journal.pone.0136437.
Rosselbroich, B. (2014): On the Origin of Autonomy. A New Look at the Major Transitions in Evolution. Springer Verlag, Kapitel 4
Schmidt-Rhaesa, A. (2007): The Evolution of Organ Systems. Oxford University Press, Kapitel 4
Sebe-Pedros, A.; Roger, A.J. et al. (2010) Ancient origin of the integrin-mediated adhesion and signaling machinery. PNAS 107, 10142-10147.
Kollagen
Allgemeine Literatur zum Kollagen:
Alberts, B. et al.: Molecular Biology of the Cell (aktuelle Auflagen, z.B. 7. Auflage, 2022); Kapitel 19.
Campbell, N.A., Reece, J.B. et al: Biology (z.B. 12. Auflage, 2020); Kapitel 6.7 und 40.1.
Sadava, D., et al. (2019): Purves Biologie. Berlin Heidelberg New York: Springer-Verlag. Kapitel 5.4, 6.2 und 39
Mein Artikel zur extrazellulären Matrix: Molekularbiologie der Zelle Teil 16: Zellgewebe und Zellverknüpfung: https://internet-evoluzzer.de/zellgewebe/
Evolutionäre Ursprünge zum Kollagen:
Linden, Tess & King, Nicole. (2021). Widespread distribution of collagens and collagen-associated domains in eukaryotes. 10.1101/2021.10.08.463732. https://www.biorxiv.org/content/10.1101/2021.10.08.463732v1.full (dort insbesondere auch das reichhaltige Quellenmaterial!)
Rosselbroich, B. (2014): On the Origin of Autonomy. A New Look at the Major Transitions in Evolution. Springer Verlag, Kapitel 4
Schmidt-Rhaesa, A. (2007): The Evolution of Organ Systems. Oxford University Press, Kapitel 4
Zell-Zell-Verbindungen
Allgemeine Literatur:
Alberts, B. et al.: Molecular Biology of the Cell (aktuelle Auflagen, z.B. 7. Auflage, 2022); Kapitel 19.
Campbell, N.A., Reece, J.B. et al: Biology (z.B. 12. Auflage, 2020); Kapitel 6.7 und 40.1.
Sadava, D., et al. (2019): Purves Biologie. Berlin Heidelberg New York: Springer-Verlag. Kapitel 5.4, 6.2 und 39
Mein Artikel zur extrazellulären Matrix: Molekularbiologie der Zelle Teil 16: Zellgewebe und Zellverknüpfung: https://internet-evoluzzer.de/zellgewebe/
Evolutionäre Hintergründe zur Entstehung der Zell-Zell-Verbindungen:
Abascal F, Zardoya R. (2012). Evolutionary analyses of gap junction protein families. Biochim Biophys Acta 1828(1):4-14. doi: 10.1016/j.bbamem.2012.02.007.
Alexopoulos H, Böttger A, Fischer S, Levin A, Wolf A, Fujisawa T, Hayakawa S, Gojobori T, Davies JA, David CN, Bacon JP. (2004). Evolution of gap junctions: the missing link? Curr Biol. 14(20):R879-80. doi: 10.1016/j.cub.2004.09.067.
Cummins PM. (2012). Occludin: one protein, many forms. Mol Cell Biol. 32(2):242-50. doi: 10.1128/MCB.06029-11.
Daisuke F, Yasuo H, Ryoichi Y, Yasuhisa E (2010): Phylogenetic and bioinformatic analysis of gap junction-related proteins, innexins, pannexins and connexins. In: Biomedical Research Vol. 31 No. 2: 133-142. doi:10.2220/biomedres.31.133
Gallin WJ (1998). Evolution of the “classical” cadherin family of cell adhesion molecules in vertebrates., Molecular Biology and Evolution, Volume 15, Issue 9, Pages 1099–1107, https://doi.org/10.1093/oxfordjournals.molbev.a026017
Gul IS, Hulpiau P, Saeys Y, van Roy F. (2017). Evolution and diversity of cadherins and catenins. Exp Cell Res. 358(1):3-9. doi: 10.1016/j.yexcr.2017.03.001.
Hervé, JC; Phelan, P; Bruzzone, R; White, TW. (2005). “Connexins, innexins and pannexins: Bridging the communication gap”. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1719 (1–2): 3–5. doi:10.1016/j.bbamem.2005.11.013
Hulpiau P, van Roy F. (2009): Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol. 41(2):349-69. doi: 10.1016/j.biocel.2008.09.027.
Mukendi C, Dean N, Lala R, Smith J, Bronner ME, Nikitina NV. (2016). Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey. Int J Dev Biol60(1-3):39-51. doi: 10.1387/ijdb.150364nn.
Murray PS, Zaidel-Bar R. (2014). Pre-metazoan origins and evolution of the cadherin adhesome. Biol Open. 3(12):1183-95. doi: 10.1242/bio.20149761.
Phelan, P. (2005). “Innexins: members of an evolutionarily conserved family of gap-junction proteins”. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1711 (2): 225–245. doi:10.1016/j.bbamem.2004.10.004
Rosselbroich, B. (2014): On the Origin of Autonomy. A New Look at the Major Transitions in Evolution. Springer Verlag, Kapitel 4
Schmidt-Rhaesa, A. (2007): The Evolution of Organ Systems. Oxford University Press, Kapitel 4
Welzel G, Schuster S. (2022). Connexins evolved after early chordates lost innexin diversity. Elife 11:e74422. doi: 10.7554/eLife.74422.
Zellkommunikation und Genaktivierung – hochgradig konserviert
Allgemeine Literatur zur Zellkommunikation:
Alberts, B. et al.: Molecular Biology of the Cell (aktuelle Auflagen, z.B. 7. Auflage, 2022); Kapitel 15.
Campbell, N.A., Reece, J.B. et al: Biology (z.B. 12. Auflage, 2020); Kapitel 11.
Sadava, D., et al. (2019): Purves Biologie. Berlin Heidelberg New York: Springer-Verlag. Kapitel 7
Mein Artikel zur Zellkommunikation: https://internet-evoluzzer.de/zellkommunikation/
Zur Evolution der Zellkommunikation:
Bill CA, Vines CM. (2020). Phospholipase C. Adv Exp Med Biol. 1131:215-242. doi: 10.1007/978-3-030-12457-1_9.
Bos, J L. (2006). “Epac proteins: multi-purpose cAMP targets”. Trends in Biochemical Sciences. 31 (12): 680–686. doi:10.1016/j.tibs.2006.10.002
de Mendoza A, Sebé-Pedrós A, Ruiz-Trillo I. (2014). The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biol Evol. 6(3):606-19. doi: 10.1093/gbe/evu038.
Hu, GM., Mai, TL. & Chen, CM. (2017). Visualizing the GPCR Network: Classification and Evolution. Sci Rep 7, 15495 https://doi.org/10.1038/s41598-017-15707-9
Krishnan A, Almén MS, Fredriksson R, Schiöth HB. (2012): The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS One. 7(1):e29817. doi: 10.1371/journal.pone.0029817.
Nordström, KJV et al. (2011). Independent HHsearch, Needleman–Wunsch-Based, and Motif Analyses Reveal the Overall Hierarchy for Most of the G Protein-Coupled Receptor Families, Molecular Biology and Evolution, Volume 28, Issue 9, Pages 2471–2480, https://doi.org/10.1093/molbev/msr061
Pizzoni A, Zhang X, Altschuler DL. (2024). From membrane to nucleus: A three-wave hypothesis of cAMP signaling. J Biol Chem. 300(1):105497. doi: 10.1016/j.jbc.2023.105497.
Suh, PG; Park, JI; Manzoli, L; Cocco, L; Peak, JC; Katan, M; Fukami, K; Kataoka, T; Yun, S; Ryu, SH (2008). “Multiple roles of phosphoinositide-specific phospholipase C isozymes”. BMB Reports. 41 (6): 415–34. doi:10.5483/bmbrep.2008.41.6.415
Wang X, Liu Y, Li Z, Gao X, Dong J, Yang M. (2020). Expression and evolution of the phospholipase C gene family in Brachypodium distachyon. Genes Genomics. 42(9):1041-1053. doi: 10.1007/s13258-020-00973-1.
WNT-Signalweg und Notch-Signalweg:
Allgemeine Literatur:
Alberts, B. et al.: Molecular Biology of the Cell (aktuelle Auflagen, z.B. 7. Auflage, 2022); Kapitel 15.
Evolution der beiden Signalwege:
Gazave, E., Lapébie, P., Richards, G.S. et al. (2009). Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol Biol 9, 249 https://doi.org/10.1186/1471-2148-9-249
He, X., Wu, F., Zhang, L. et al. (2021). Comparative and evolutionary analyses reveal conservation and divergence of the notch pathway in lophotrochozoa. Sci Rep 11, 11378 https://doi.org/10.1038/s41598-021-90800-8
Holstein TW. (2012) The evolution of the Wnt pathway. Cold Spring Harb Perspect Biol. 4(7):a007922. doi: 10.1101/cshperspect.a007922.
Holzem, M., Boutros, M. & Holstein, T.W. (2024) The origin and evolution of Wnt signalling. Nat Rev Genet 25, 500–512 https://doi.org/10.1038/s41576-024-00699-w
Lv Y, Pang X, Cao Z, Song C, Liu B, Wu W, Pang Q. (2024). Evolution and Function of the Notch Signaling Pathway: An Invertebrate Perspective. Int J Mol Sci. 25(6):3322. doi: 10.3390/ijms25063322. PMID: 38542296
Radtke F, Schweisguth F, Pear W (2005): The Notch ‘gospel’. EMBO Rep, 6: 1120-1125. 10.1038/sj.embor.7400585.
Ediacara-Fossilien, erste Metazoen, erste Vielzeller:
Bengtson S, Sallstedt T, Belivanova V, Whitehouse M (2017) Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol 15(3): e2000735. https://doi.org/10.1371/journal.pbio.2000735
Chen L, Xiao S, Pang K, Zhou C, Yuan X ( 2014). “Cell differentiation and germ–soma separation in Ediacaran animal embryo-like fossils”. Nature. 516 (7530): 238–241. doi:10.1038/nature13766
El Albani, Abderrazak; et al. (2010). “Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago”. Nature. 466 (7302): 100–4.
Huldtgren T, Cunningham JA, Yin C, Stampanoni M, Marone F, Donoghue PC, Bengtson S (2011). “Fossilized Nuclei and Germination Structures Identify Ediacaran “Animal Embryos” as Encysting Protists”. Science. 334 (6063): 1696–1699. doi:10.1126/science.1209537
Fonseca, C; Mendonça F, João G; Reolid, M; Duarte, LV.; de Oliveira, AD; Souza, JT; Lézin, C (2023). “First putative occurrence in the fossil record of choanoflagellates, the sister group of Metazoa”. Scientific Reports. 13 (1): 1242. doi:10.1038/s41598-022-26972-8
Oschmann, W. (2016): Evolution der Erde. Utb
Peterson, KJ.; Cotton, JA.; Gehling, JG.; Pisani, D (2008). “The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records”. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 363 (1496): 1435–1443. doi:10.1098/rstb.2007.2233
